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ABSTRACT 

Dispersion and dissipation phenomena associated with waves propa- 

gating in blood vessels are potential measures of the distensibility of 

the vessels and other cardiovascular parameters. In this investigation 

we assume the vessels to behave like thin-walled circular cylindrical 

shells filled with an inviscid compressible fluid. 

assumed to have isotropic and homogeneous viscoelastic properties. 

waves are described by small three-dimensional displacements of the middle 

surface of the shell from an equilibrium configuration defined by a mean 

transmural pressure and an initial axial strain. The fluid motion 

associated with the waves is considered as irrotational. The linearized 

differential equations of motion are based on the shell equations derived 

by Fliigge. 

The vessel wall is 

The 

While a l l  previous work on wave propagation in blood vessels has 

been restricted to axisymmetric waves, we include in o u r  consideration 

waves which exhibit a circumferential dependence of the corresponding 

displacements of the vessel wall. For each circumferential wave number 

we find infinitely many waves with individual speeds of propagation, of 

which only the three slowest waves are not due to the compressibility of 

the fluid. In this study we disregard all but the three slowest waves, 

and denote these as waves of type I, I1 and 111. In waves of type I the 

radial displacement component is dominant at high frequencies, while 

in waves of type I1 the circumferential and in waves of type I11 the axial 

displacement component dominate at high frequencies. Of these three 

types of waves, those of type I1 and I11 are less important from the 

practical point of view, since only type I waves are associated with 

significant internal pressure fluctuations. 
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The r e s u l t s  of a parametric analysis  assuming a pure ly  e l a s t i c  model 

f o r  the  ves se l  wa l l  i nd ica t e  t h a t  axisymmetric waves a r e  only mildly 

d ispers ive  while non-axisymmetric waves a r e  highly d i spe r s ive  and exh ib i t  

cut-off  phenomena. Thetransmural pressure and t h e  i n i t i a l  a x i a l  s t r e t c h  

can have a marked e f f e c t  on phase ve loc i t i e s ,  mode shapes and cut-off  

f requencies  of waves of a l l  t h r e e  types.  

The v i s c o e l a s t i c  p rope r t i e s  of t h e  v e s s e l  wa l l  a r e  t r e a t e d  by 

assuming t h a t  t he  wall  ma te r i a l  i s  incompressible but  behaves a s  a Voigt 

s o l i d  i n  shear .  Using such a v i scoe la s t i c  model it i s  found t h a t  the  

decrease pe r  wavelength i n  wave amplitudes i s  e s s e n t i a l l y  independent of 

frequency over a wide range of high frequencies .  

q u a l i t a t i v e  agreement with recent  experiments on t h e  d i s s i p a t i o n  of high 

frequency waves i n  t h e  tho rac i c  aor ta  of anes the t ized  dogs. Axisymmetric 

waves of type I1 and type I11 exhib i t  s t ronger  d ispers ion  a s  compared with 

t h e  e l a s t i c  case,  while those of type I remain only s l i g h t l y  d ispers ive .  

I n  c o n t r a s t  t o  the  e l a s t i c  case,  non-axisywnetric waves a re  propagated 

a t  a l l  frequencies,  although t h e  damping pe r  wavelength of such waves 

i s  very s t rong a t  f requencies  below t h e  e l a s t i c  cut-off  po in t .  

v i s c o e l a s t i c  walls t h e  d i s s ipa t ion  of waves shows a high s e n s i t i v i t y  t o  

changes i n  t h e  transmural pressure and i n i t i a l  a x i a l  s t r e t c h .  Consequently, 

t h e  r e l i a b l e  es t imat ion of t he  v i scoe la s t i c  parameters of the  ves se l  wall  

from experiments involving high frequency wave propagation must  take i n t o  

cons idera t ion  t h e  e f f e c t s  of a x i a l  s t r e t c h  and t ransmural  pressure.  

This r e s u l t  i s  i n  

For 
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NOMENCLATURE 

a - C.yULLSUL - - . - - : l < k - ; r r m  A W L , *  A. ~ ~ ~ ~ 1 1 ~ .  -..*..I of the m i d d l e  sur face  of t he  ves se l  wall 

5 = wave amplitude a t  a d is tance  of one wavelength from o r i g i n  

A. = wave amplitude a t  o r i g i n  

Asc 

Bsc = mode amplitudes f o r  c i rcumferent ia l  wave number s, phase ve loc i ty  c 

sc 
C 

a x i a l  phase ve loc i ty  w - - =  - 

!R 
C 

C b = ( 3Eo/pw)1/2 = normalizing phase ve loc i ty  ( v i s c o e l a s t i c  s h e l l )  

= speed of sound i n  blood f C 

2 1/2 
C = [E/pw(l-v ) ]  = normalizing phase ve loc i ty  ( e l a s t i c  s h e l l )  
P 

- 
C = c/cp = dimensionless phase ve loc i ty  ( e l a s t i c  s h e l l )  

= c/cb = dimensionless phase ve loc i ty  ( v i s c o e l a s t i c  s h e l l )  A 

c 

c* = c /c = dimensionless speed of sound i n  blood ( e l a s t i c  s h e l l )  
f P  

6* = c /c = dimensionless speed of sound i n  blood ( v i s c o e l a s t i c  s h e l l )  f b  

D 

D 

= a/& = d i f f e r e n t i a l  operator  

= constant  r e l a t e d  t o  i n i t i a l  condi t ions  of f l u i d  sc  

2 2 
= h /(12a ) = dimensionless parameter 

2 e 

E = Young's modulus of v e s s e l  w a l l  

= zero frequency modulus, v i scoe la s t i c  s h e l l  EO 

A 

E = complex Young's modiilus 

G = e l a s t i c  shear  modulus 

x i i i  



h = thickness  of v e s s e l  wall  

i =F 
Is(k) = modified Bessel  funct ion of t h e  f i r s t  kind, argument 6 

= (% t i k  )a = complex a x i a l  wave number 

= Re(ka/a) 

I ka 

kR 
= Im(ka/a) kI 

K = e l a s t i c  bulk  modulus 

= d i f f e r e n t i a l  opera tors  
L i j  

= r a d i a l  apparent mass of blood contained i n  the  v e s s e l  f m 

= ex te rna l  pressure appl ied  t o  v e s s e l  'e 

= perturbed i n t e r n a l  pressure  appl ied  t o  v e s s e l  P i  

= unperturbed i n t e r n a l  pressure  'io 

P,P' = v i scoe la s t i c  opera tors  

2 
= T (1-v )/Eh = dimensionless a x i a l  stress r e s u l t a n t  %. 10 

2 
= aAp( 1-v )/Eh = dimensionless r a d i a l  s t r e s s  r e s u l t a n t  q2 

= Tlo/( 3Eoh) = dimensionless a x i a l  s t r e s s  r e s u l t a n t  ( v i s c o e l a s t i c  91 

s h e l l )  

= a&/( 3Eoh) = dimensionless r a d i a l  s t r e s s  r e s u l t a n t  ( v i s c o e l a s t i c  q2 

s h e l l )  

QJQ' = v i scoe la s t i c  opera tors  

r = coordinate i n  r a d i a l  d i r e c t i o n  

S = circumferent ia l  wave number 

t = time 

x i v  



= initial axial tension of vessel T1O 

u,v,w = displacements of vessel middle surface in axial, circumferential 

and radial directions, respectively 
- 
V = fluid velocity 

X = coordinate in axial direction 

a 

B = coordinate in circumferential direction 

= xia = dimensionless axiai coordinate 

- AP - pio - pe = transmural pressure 

7 = vessel wall coefficient of viscosity 

fi = v / ( a p w J K  ) = dimensionless vessel wall coefficient of 

viscosity 

= fluid inertia parameter pf 
2 2  

= (1-v )a (pwh)/Eh = wall inertia parameter pw 

V = Poisson's ratio 

$ = Ccmplex Poisson's ratio (viscoelastic shell) 

- 
= p /p = dimensionless density ratio f w  P 

= blood density pf 

= vessel wall density 

0 = fluid velocity potential 

5 ua 2 2 1/2 = -(1 - c /ep) = dimensionless parameter 
C 

LD = angular frequency 

0 = ua/c = dimensionless angular frequency (elastic shell) 

ci3 

- 
P 

= coa/cb = dimensionless angular frequency (viscoelastic shell) 

xv 



V 

2 
V 

= gradien t  opera tor  

= Laplacian opera tor  

xv i  



INTRODUCTION 

The transmission v e l o c i t y  of the n a t u r a l  pulse  wave i n  an a r t e r y  

of given diameter and w a l l  thickness has long been recognized a s  an 

approximate measure of the  e l a s t i c i t y  or d i s t e n s i b i l i t y  of t h a t  a r t e ry .  

A rough estimate of t he  e l a s t i c i t y  in  the  form of an e f f ec t ive  Young's 

modulus can be obtained through the  Moens-Korteweg equation: 

1 

2 Eh c = -  
2Pf a 

i n  which c denotes the  s igna l  velocity,  E Young's modulus, h the  

w a l l  th ickness ,  a the  rad ius  of the vessel ,  and p t he  densi ty  of t he  

blood. 

f 

For a comparative study of d i f f e ren t  physiological  s i t ua t ions  or a 

study of the  e f f e c t s  of various stresses such as prolonged weightlessness 

or acce lera t ion  on t h e  e l a s t i c  propert ies  of blood vessels ,  we need a 

more p r e c i s e  q u a n t i t a t i v e  descr ipt ion than t h a t  afforded by the  n a t u r a l  

pu lse  wave and t h e  Moens-Korteweg equation. 

If we consider the  propagation of a pulse wave i n  the  vascular system 

as a problem of applied mechanics, we expect the  pulse wave ve loc i ty  t o  

be a func t ion  of t h e  following propert ies  and parameters: 

E l a s t i c  proper t ies  of vessel  wall 

Diameter of vesse l  (geometry of ves se l )  

Thickness of v e s s e l  w a l l  

Transmural pressure (blood pressure)  

Shape of vave 

Longitudinal s t r e t c h  ( tens ion)  of vesse l  

1 



Density of ves se l  wall  

Density of blood 

Mean flow and nature  of flow 

Viscous p rope r t i e s  of ves se l  wall 

Compressibility of blood 

Viscosity of blood 

Propert ies  of vascular  bed 

The v a r i a b i l i t y  of these  parameters and p rope r t i e s  d i f f e r s  g r e a t l y  and 

probably a l so  t h e i r  s ign i f icance  i n  a f f ec t ing  the  pulse  wave ve loc i ty .  

For example, the  va r i a t ions  i n  the  d e n s i t i e s  of t h e  ves se l  w a l l  and t h e  

blood w i l l  hardly ever  be more than a few percent ,  while t he  transmural 

pressure  may vary wi th in  seconds by as much as a f a c t o r  of two o r  more. 

I n  any attempt t o  p red ic t  t h e o r e t i c a l l y  the  manner i n  which a given 

s igna l  i n  the f o r m  of a pressure f l u c t u a t i o n  or vesse l  wall displacement 

propagates through the  vascular  system w e  have, of course, t o  r e s o r t  t o  

approximations by introducing models f o r  t h e  dynamic behavior of the  

blood, t he  complex geometry of t he  vesse ls ,  t h e i r  e l a s t i c  behavior and 

the  proper t ies  of t he  vascular  bed. 

approaches i n  t he  mathematical ana lys i s  of blood flow was published by 

Fox and Saibel  i n  1963. 

To assess the  s ign i f icance  of each of t h e  p rope r t i e s  and parameters 

An i n c i s i v e  review of var ious e a r l i e r  

2 

l i s t e d  above we have begun a systematic t h e o r e t i c a l  s t u d y  tak ing  i n t o  

consideration the  r e s u l t s  of recent  i nves t iga t ions .  

phase of our ana lys i s  we have introduced t h e  following assumptions: 

I n  t h e  i n i t i a l  3-10 

1. The waves ( s i g n a l s )  considered have t h e  form of s inusoida l  

displacements of t h e  ves se l  wall .  

2 



2. 

3 .  

4. 

5 .  

6 .  

It 

The s igna l s  a r e  s u f f i c i e n t l y  small t o  allow l i n e a r i z a t i o n  of 

t he  equat ions.  

I n  equi l ibr ium the vesse ls  have t h e  form of a c i r c u l a r  

c y l i n d r i c a l  s h e l l  of constant diameter and w a l l  thickness .  

The v e s s e l  wa l l  has uniform and i s o t r o p i c  e l a s t i c  o r  visco-  

e l a s t i c  p rope r t i e s .  

The blood behaves l i k e  a compressible i n v i s c i d  f l u i d .  

The e f f e c t s  of t he  vascular bed can be neglected.  

i s  convenient t o  d iv ide  the  ana lys i s  i n t o  two d i s t i n c t  p a r t s .  

I n  t h e  f irst ,  the  w a l l  i s  assumed t o  be purely e l a s t i c  i n  nature ,  obeying 

Hooke's law f o r  small displacements. 

assumed t o  have l i n e a r  v i s c o e l a s t i c  p r o p e r t i e s  f o r  s m a l l  displacements. 

I n  each case,  t h e  displacements represent  devia t ions  from an equi l ibr ium 

conf igura t ion  which i s  def ined by an i n i t i a l  a x i a l  s t r e t c h  and an i n i t i a l  

transmural pressure .  

I n  the  second p a r t ,  the  wa l l  i s  

O u r  approach d i f f e r s  from e a r l i e r  s tud ie s  i n  t h a t  we do not r e s t r i c t  

ourse lves  t o  axisymmetric waves, b u t  include i n  our considerat ions waves 

which exh ib i t  a c i rcumferent ia l  dependence of the  corresponding d isp lace-  

ments of t he  v e s s e l  wall. Also, we include the  e f f e c t s  on t h e  phase 

v e l o c i t i e s  of an i n i t i a l  axial s t r e t c h  and t ransmural  pressure,  which have 

only r ecen t ly  been considered f o r  low frequency axisymmetric waves by 

Atabek and Lew. 

t h e  v e s s e l  incorporates  t h e  e f f e c t s  of bending r i g i d i t y ,  which a r e  of 

Besides t h i s ,  our model f o r  t he  e l a s t i c  behavior of 10 

importance a t  

OE dispersion 

Thei r  r e s u l t s  

a l l  bu t  low frequencies.  The inf luence of blood v i scos i ty  

has  been analyzed t.0 some extent  by seve ra l  i nves t iga to r s .  

i n d i c a t e  t h a t  dispers ion due t o  t h e  v i s c o s i t y  of the  blood 

3,4,10 
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appears to be pronounced only at very low frequencies. 

fore neglected blood viscosity in this first analysis. 

We have there- 



PART I - ELASTIC SHELL ANALYSIS 

The s i g n a l s  considered are defined by the  displacement components 

u, v, w of an a r b i t r a r y  po in t  of the middle surface of t h e  v e s s e l  i n  t h e  

ax ia l ,  c i r cumfe ren t i a l  and r a d i a l  d i r ec t ion  respect ively.  A s  i l l u s t r a t e d  

i n  F ig .  1, t h e  v e s s e l  i s  r e f e r r e d  t o  a set  of c y l i n d r i c a l  coordinates 

x, r, p such t h a t  r = a represents  t h e  middle surface of t h e  v e s s e l  

w a l l .  The displacement components u, v, w are thus funct ions of t h e  

two coordinates  x and p, implying t h a t  t h e  waves t o  be s tudied a r e  

two-dimensional i n  cha rac t e r .  

The f l u i d  contained within the  v e s s e l  i s  assumed t o  be compressible 

and i n v i s c i d .  Besides t h i s  w e  assume t h a t  t h e  flow associated with the  

s igr ,a ls  i s  i r r o t a t i o n a l  and t h a t  the e f f e c t s  of  a mean flow and of g rav i ty  
+ 

can be neglected.  The f l u i d  veloci ty  v i s  then given by 

Within t h e  realm of a l i n e a r i z e d  theory t h e  ve loc i ty  p o t e n t i a l  

t h e  three-dimensional con t inu i ty  equation 

0 s a t i s f i e s  

wi th  c denoting t h e  speed of sound i n  t h e  f l u i d .  If we l e t  p denote f i 

t h e  perturbed i n t r a - a r t e r i a l  pressure, 

absence of a s i g n a l  and p t h e  f l u i d  density,  t h e  l i n e a r i z e d  Euler 

equat ion can be w r i t t e n  i n  t h e  form 

the  i n t e r n a l  pressure i n  t h e  'io 

f 



The ve loc i ty  p o t e n t i a l  Q and the  r a d i a l  displacement component w a r e  

interconnected through t h e  kinematic boundary condi t ion 

We now consider so lu t ions  t o  t h e  con t inu i ty  equation ( 2 )  of t he  form 

where D i s  an amplitude defined by i n i t i a l  condi t ions,  s i s  t h e  

c i rcumferent ia l  wave number, cu t h e  c i r c u l a r  frequency, c t he  wave 

ve loc  i t y  , 
s and 

sc 

Is t h e  modified Bessel  func t ion  of t h e  f i r s t  kind of order  

The vessel  i s  assumed t o  behave l i k e  an e l a s t i c ,  homogeneous, 

i s o t r o p i c  and thin-walled c i r c u l a r  c y l i n d r i c a l  s h e l l ,  i t s  wall th ickness  

i s  denoted by h, i t s  Young's modulus by E and i t s  Poisson ' s  r a t i o  by 

v .  The a x i a l  s t r e t c h  of t he  v e s s e l  g ives  r ise t o  an i n i t i a l  axial  t ens ion  

Tlo 

pressure  Ap i s  given by 

t h e  t ransmural  'e and i n  t h e  presence of an e x t e r n a l  pressure  

For convenience we introduce t h e  dimensionless s t r e s s  r e s u l t a n t s  i n  t he  

a x i a l  and c i rcumferent ia l  d i r e c t i o n s  

6 



and the  two-dimensional Lapiaciaii O p e i - a t G r  5y  

with t h e  non-dimensional axial  coordinate a defined by 

X a = - .  a 

The e l a s t i c  behavior of t h e  ves se l  wall i s  assumed t o  be governed by the  

l i nea r i zed  equations f o r  c i r c u l a r  cy l ind r i ca l  s h e l l s  derived by W. F l k g e  

which have been shown t o  be use fu l  a l so  i n  analyzing t h e  v ib ra t ions  of 

c y l i n d r i c a l  s h e l l s  t h a t  can no longer be considered as thin-walled.  

Hence f o r  s m a l l  displacements from the  equilibrium configurat ion and f o r  

s h e l l s  whose length  remains unchanged a f t e r  t he  i n i t i a l  a x i a l  s t r e t c h  

has  been appl ied we have the  following d i f f e r e n t i a l  equations f o r  t h e  

dis2lacement components u, v, w :  

11 

8 

7 



2 
+ ( P  + P,) - a w  - 0 ,  a t2  - W 

The d i f f e r e n t i a l  operators  L a r e  defined a s  
i j  

- - ( l + v )  a2 
L12 - L21 - 2 -  

- a 
L13 - Lgl = v - e 

where 

2 h2 

12a 
e = -  

2 -  

Pw and Pf a r e  i n e r t i a  q u a n t i t i e s  assoc ia ted  with t h e  wall and the  fluid: 

a 



I 

with m denoting t h e  apparerrt mass of t he  f l u i d .  By def in i t i on ,  we 

have 

f 

while from t h e  Euler  equation we obtain 

We assume so lu t ions  t o  Eqns. (12) of t h e  form 

I w 
I u = A exp[ i  -$x - c t )  + isg] s c  
1 

(0 
I v = B exp[ i  --(,-et) + isp] 

sc 

w x w = c exp[ i  - (x-ct)  + i s g  + i -1 . s c  C 2 

Combining Eqns. (4), (5 ) ,  (17 )  and (IS), we f i n d  f o r  t h e  apparent mass 

The s u b s t i t u t i o n  of (19) i n t o  (12)  l eads  t o  a s e t  of t h ree  l i n e a r  homo- 

and Csc. The requi re -  geneous equat ions f o r  the  coe f f i c i en t s  

ment t h a t  n o n - t r i v i a l  so lu t ions  e x i s t  f o r  A B and C then leads  

t o  t h e  frequency equation of the  sys tem.  

t o  a convenient form we introduce the following dimensionless parameters:  

AscJ Bsc 

scJ  sc sc  

To reduce the  frequency equation 

2 2 -2 2 2 -2 2 2  2 - 
P 

c = E / [ p w ( l - v  ) I ,  c = c /ep, w = (0 a /epy P = pf/pW, 

2 2 2  
f P  

c* = c / c  . 

9 



. -  

Then 

C c *‘ 

and t h e  frequency equation can be w r i t t e n  as 

2 -2 

I 
I”-< -2 l+q1+vq2)+q2s 

c 

S 

I Y 
- - I t - -  

- - - - -  
-4 0 -2 ( q1+c12 )+ O( 2 1+3e2) 3 I 

-2 

1 C 

2 - 2  

I + (l+q2)s - Lu 

I M 
E 

T I  R 

I 
‘ c  

I 

I 

S 
2 ( 3 - v )  z2 - -e 2 -2 

C 

10 
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GENERAL RESULTS OF ELASTIC SHELL ANALYSIS 

The frequency equation (23) i n t e r r e l a t e s  nine dimensionless param- 
- - -  

e t e r s :  ql, q2, v, s J  h/a, P, w, c and e*. Young's modulus E, t he  

wa l l  dens i ty  p and the  rad ius  of t h e  middle sur face  a do not e n t e r  

i n t o  the  equation e x p l i c i t y ,  but a f f ec t  the  so lu t ions  a s  s ca l e  f a c t o r s  

through W, c and c*. W t h  the  a id  of an 134 7094 d i g i t a l  compter  

we have determined c 
B and Csc as a func t ion  of the  8 o the r  nondimensional parameters. 

W 

- -  

*sc ,  
and t h e  corresponding mode shape defined by 

sc 
For each c i rcumferent ia lwave  number s we f i n d  i n f i n i t e l y  many 

waves with ind iv idua l  speeds of propagation. Within the  parameter ranges 

pe r t a in ing  t o  phys io logica l  problems a l l  but t h e  t h r e e  slowest waves of 

each i n f i n i t e  s e t  of waves f o r  a given s a r e  a d i r e c t  consequence of t he  

c o x p e s s i b i l i t y  of t h e  f l u i d .  

t o  54 a re  based on c = 1500 meters/sec and a r e  i n  agreement wi th in  t h e  

drawing accuracy with t h e  r e s u l t s  for an incompressible f l u i d  

We shall i d e n t i f y  t h e  th ree  slowest waves as vaves of t y p  I, I1 and 111. 

The r e s u l t s  given a s  graphs i n  Figures  2 

f 

( e  = a). f 

I n  waves of type I t h e  r a d i a l  displacement component i s  dominant a t  high 

frequencies ,  while i n  waves of type I1 t he  c i rcumferent ia l  and i n  waves 

of type  I11 t h e  a x i a l  displacement components dominate a t  high frequencies .  

All of the  f a s t e r  waves exh ib i t  cut-off f requencies  ( f requencies  a t  which 

t h e  phase v e l o c i t y  i s  i n f i n i t e )  and a r e  t ransmi t ted  only a t  f requencies  

above 1000 cycles/sec f o r  physiological ly  meaningful parameter values .  

I n  t h i s  inves t iga t ion  we s h a l l  disregard these  waves and consider only 

waves of type I, I1 and 111. 

The gene ra l  d i spers ive  nature of t h e  waves of type I, I1 and I11 i s  

i l l u s t r a t e d  i n  Figure 2, which depic t s  t he  non-dimensional axial  phase 

11 



- 
v e l o c i t y  c = c/c as a func t ion  of the  frequency parameter w = ua/c 

P P 
f o r  s = 0 through s = 5 and for zero transmural pressure (% = 0 )  

and zero te ther ing  ( q  = 0 ) .  The amplitude pa t t e rns  corresponding t o  1 

these  waves a re  shown i n  Figures  3J 4 and 5 i n  which t h e  r e l a t i v e  

magnitudes of the  r a d i a l ,  c i rcumferent ia l  and a x i a l  displacement compo- 

nents  a re  p lo t t ed  versus u). A s  i s  evident from Figures  2 t o  5J  we f i n d  

t h a t  f o r  q1 = 0 and 92 = 0 t h e  waves of type 1, I1 and I11 a l s o  

exh ib i t  cut-off f requencies  below which no waves of t he  kind considered 

- 

are being propagated. 

a r e  consis tent , ly  much higher  than those of t he  type I waves. From t h i s  

For waves of type I1 and I11 t h e  cut-off  frequencies 

w e  conclude t h a t  waves of type I1 and I11 can be disregarded i n  non- 

axisymmetric s igna ls  with predominantly low frequency components. We 

a l s o  note t h a t  i r r e spec t ive  of t he  number of c i rcumferent ia l  lobes the  

amplitude pa t t e rn  of a given wave general ly  depends s t rongly  on the  

frequency, which emphasizes t h e  s ign i f icance  of allowing f o r  t he  i n t e r -  

ac t ion  of the three  displacement components i n  t h e  ana lys i s .  

Discussion of Ty-pe I Waves 

The charac te r iza t ion  of t h e  type I waves a s  having a l a rge  rad ia l  

displacement component i s  i n  a s t r i c t  sense only v a l i d  for high frequencies .  

We see from Figure 3 t h a t  for s = 0 and a decreasing u) t h e  mode shape 

changes f r o m  one with a predominant r a d i a l  displacement component i n t o  one 

with a predominant axial  component. Also, f o r  s = 1 we note t h a t  f o r  

decreasing u) t h e  c i rcumferent ia l  component v l  begins  t o  exceed 

- 

- 

12 



s l i g h t l y  the  r a d i a l  displacement component w l .  

shape for s = 0 with decreasing cu i s  a l s o  observed when t h e  densi ty  

of t h e  f l u i d  i s  taken as zero.  However, t h i s  change i s  more pronounced 

and t akes  place a t  higher  frequencies when t h e  s h e l l  i s  f i l l e d  with a 

A change of the  mode 
- 

l i q u i d  s ince the  apparent mass of the f l u i d  i n  t h e  r a d i a l  d i r ec t ion  for 

s m a l l  and s = 0 can be wr i t t en  as 

CL m = 2pfa -2 
LU 

f 

- - - 
and thus  becomes unbounded a s  LU approaches zero.  When p ~1 and LU, 

and h/a a re  small compared t o  1 the  displacement components 91.' 92 
for s = 0 a r e  given approximately by 

v = o  

- 
and as LU -.t 0 t h e  phase ve loc i ty  approaches 

When t h e  transmural pressure and the a x i a l  s t r e t c h  a re  zero (ql = 0, 

9;! = 0) and h/i;a << 1, equation (26) reduces t o  

;2 = h(1-v2) 

or  

2 Eh 
J 

- c =  
2Pf a 
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t h e  f ami l i a r  Moens-Korteweg equation. It i s  of i n t e r e s t  t o  note t h a t  

when t h e  couping between t h e  a x i a l  and r a d i a l  displacement components 

i s  neglected, one obtains  i n  l i e u  of (27)  

For s = 1 and -, 0 t h e  l i m i t i n g  phase ve loc i ty  i s  zero while 

t h e  l imi t ing  displacement p a t t e r n  i s  given by u = 0 and v/w = 1 which 

corresponds t o  a r i g i d  body displacement of t h e  cyl inder  i n  t h e  l a t e r a l  

d i r e c t i o n .  

If we l e t  t h e  wave number ka approach zero i n  t h e  frequency 

equation (23 )  and take  s 2 1, w e  f i n d  n o n t r i v i a l  so lu t ions  f o r  u), i . e . ,  

frequencies a t  which t h e  phase ve loc i ty  i s  i n f i n i t e .  Adhering t o  t h e  

establ ished nomenclature, w e  c a l l  t hese  frequencies  cut-off f requencies  

s ince  no waves of t h e  kind considered are being propagated whenever t h e  

frequency i s  below the  cut-off value.  Expanding t h e  determinant i n  (23)  

f o r  small values of ka and l e t t i n g  ka - 0 we ob ta in  f o r  type I waves 

the  following approximate expression f o r  t h e  cut-off frequencies : 

1' % which i s  based on t h e  assumptions t h a t  1, s 5 5, and t h a t  q 

and h/a are  small compared t o  1. From (29) we conclude t h a t  t h e  cu t -  

o f f  frequencies are independent of t h e  ax ia l  s t r e t c h  q Poisson's r a t i o  v, 1' 
do not appear i n  equation P W  Young's modulus E and t h e  wa l l  dens i ty  

( 2 9 )  but  come i n t o  play through t h e  reference v e l o c i t y  c . For 

q >> e ( s  - 1) t h e  cut-off frequency i s  approximately propor t iona l  t o  

' P  
2 2  

2 
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$. 
pressure  i s  c l e a r l y  i l l u s t r a t e d  i n  the lower ha l f  of Figure 6, which 

This dependence of t he  cut-off frequency on t h e  transmural 

g ives  the  phase ve loc i ty  f o r  s = 2 and various values  of ~ 2 .  When we 

l e t  t h e  transmural pressure  assume negative values  we f i n d  t h a t  a t  a 

c r i t i c a l  value corresponding t o  

becomes zero and t h e  system reaches a l i m i t i n g  s t a b i l i t y  boundary. 

q = - e2(s2  - 1) the  cut-off  frequency 2 

On t h e  basis of t h e  same approximations leading t o  ( 2 9 )  w e  f i nd  t h a t  

t h e  mode shapes of type I waves a t  the  cut-off  f requencies  a r e  given by 

u = o .  

Within the realm of phys io logica l ly  meaningful parameter values,  including 

t h e  case when the  transmural pressure i s  near t he  c r i t i c a l  pressure,  we 

can r ep lace  (30) by 

without  introducing a s u b s t a n t i a l  error. 

Discussion of Type I1 Waves 

Axisymmetric type I1 waves ( s  = 0)  have no displacement components 

i n  the a x i a l  and r a d i a l  d i r e c t i o n .  They a r e  nondispersive and t h e i r  

propagat ion ve loc i ty  i s  given by 

-2 1-v 2 c = T(l + 3e ) + q1 + V% . 



These waves a r e  obviously i d e n t i c a l  with the  axisymmetric t o r s i o n a l  

waves of an empty c y l i n d r i c a l  s h e l l  s ince  t h e r e  i s  no coupling between 

an inv isc id  f l u i d  and such a wave motion. For s f 0 a l l  type I1 waves 

have cu t  -o f f  f requenc i e  s 

-2 1-v 2 2 
(u = -  s ( l + e )  2 

Also, a s  shown i n  Figure 

a t  

( 3 3 )  

4, a t  cut-off  t h e  mode shapes have only an a x i a l  

displacement component, b u t  a t  higher  f requencies  they  become almost 

purely circumferent ia l .  The phase ve loc i ty  of t h e  nonaxisymmetric type 

I1 waves approach asymptot ical ly  t h a t  of t h e  symmetric wave a s  ind ica ted  

i n  Figure 2 .  

Discussion of Ty-pe I11 Waves 

Unlike t h e  case of an empty c y l i n d r i c a l  s h e l l ,  we do not f i n d  a 

6 cut-oflfrequency f o r  axisymmetric type I1 waves 

a l i m i t i n g  phase ve loc i ty  given approximately by 

but  ob ta in  with & -+ 0 

- 
when p M 1 and ql, q2 and h/a a r e  small compared t o  1. However, 

when we l e t  t h e  dens i ty  of t h e  f l u i d  approach zero,  t h e  frequency 

equation (23)  y i e l d s  the  e s t ab l i shed  value f o r  t h e  cut-off  frequency of' 

such waves : 

-2 2 
CD = l + e  . (35 )  

Non-axisymmetric waves of type I11 e x h i b i t  cut-off f requencies  a s  

ind ica ted  i n  Figure 2. The expansion of t h e  determinant i n  ( 2 3 )  for  

16 



small  wave numbers ka 

t h e  cut-off  f requencies:  

l eads  t o  the  following approximate expression for 

-2 S 2 
u) m -  - a  

s+p - h 

while we f i n d  f o r  t he  displacement p a t t e r n  a t  cut-off  

u = o .  

Rela t ions  (36) and (37) a re  again based on t h e  assumptions t h a t  

s I 5 and t h a t  q 1, % and h/a a r e  small  compared t o  1. The mode 

shapes become predominantly r a d i a l  i n  nature  a t  high frequencies  as shown 

'i; w 1, 

i n  Figure 5 and t h e  phase ve loc i t i e s  a l l  approach asymptot ical ly  

-2 2 c = 1 + q 1 + v q 2 - e  . 

PARAMETRIC STUDY OF TYPE I WAVES 

The mode shapes of type I1 and I11 waves cons i s t en t ly  have small  

displacement components i n  t h e  r a d i a l  d i r e c t i o n  and thus  a r e  assoc ia ted  

wi th  much smaller  f l uc tua t ions  of the in t ra luminal  pressure than  a r e  type 

I waves. 

waves we focus our a t t e n t i o n  i n i t i a l l y  t o  a parametric study of type I 

waves. However, f o r  the  sake of completeness, we l a t e r  a l s o  examine 

t h e  e f f e c t s  of c e r t a i n  parameters on t h e  p rope r t i e s  of type I1 and I11 

waves. 

Since w e  a r e  pr imar i ly  in t e re s t ed  i n  t h e  propagation of pressure  



Effec t s  of Transmural Pressure and Axial S t r e t ch  

The e f f e c t s  of a t ransmural  pressure  and an a x i a l  s t r e t c h  on the  

phase v e l o c i t i e s  and mode shapes of type I waves a r e  i l l u s t r a t e d  i n  

Figures  6 t o  9 f o r  s = 0 and s = 2. The phase v e l o c i t i e s  and mode 

shapes have been computed f o r  a s e t  of t ransmural  pressures  corresponding 

t o  9;1 = 0.1, 0.2, 0.5 and 0.8 and a s e t  of a x i a l  s t r e t c h  values  corre-  

sponding t o  q = 0 . 1  and 0.2. The se l ec t ed  parameter values  can be 

given physiological ly  meaningful i n t e r p r e t a t i o n .  

q, = 0.1 i f  E = 10 dynes/cm , v = 0.5, h/a = 0.1, and Ap = 10 mm Hg, 

while 

t ransmural  pressure and v = 0.5. 

1 
We have f o r  example 

6 2 
2 

= 0.1 represents  an i n i t i a l  a x i a l  s t r a i n  of 13.3$ a t  zero 91 
From Figures  6 and 7 we note t h a t  with 

increas ing  transmural pressure  t h e  phase ve loc i ty  gene ra l ly  increases  

f o r  both axisymmetric and nonasixymmetric waves. For 5; < 0.2 t h e  

nondimensional phase ve loc i ty  c of t he  axisymmetric waves increases  
- 

l e s s  than  30% when q 

0.2 5 1; 1.0 the  corresponding increase  i s  a t  most 125%. I n  s t a t i n g  

i s  increased form 0 t o  0.8, while for 
2 

t h i s  r e s u l t  it should be mentioned t h a t  t h e  s h e l l  equat ions used i n  t h i s  

ana lys i s  require  q1 and 92 t o  be llsmall" i n  comparison t o  1.0, which 

implies  t ha t  t he  curves f o r  

approximations. 

= 0.8 should be considered only as rough 
92 

While the phase v e l o c i t i e s  and mode shapes of axisymmetric waves a re  

not d r a s t i c a l l y  changed by moderate t ransmural  pressures ,  we f i n d  t h a t  

t h e n o n - a x i s m e t r i c  waves s = 2 are s i g n i f i c a n t l y  a f f e c t e d .  Since i n  

2 7  t h e  i l l u s t r a t e d  example q >> e (s-  - l), t h e  cu t -of f  f requen(: ies  

increase  approximately a s  

ance of waves of t h i s  type from the  frequency i n t e r v a l  

2 

Jr. , which may mean the  complete disappt,ar- 

0 S LU i 1000 
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cycles/second with a s u f f i c i e n t  increase i n  transmural pressure .  

ind ica ted  e a r l i e r ,  t h e  cut-off frequency f o r  

and t h e  system becomes unstable  i f  we l e t  t h e  transmural pressure  f a i l  

As 

s = 2 approaches zero 

below c e r t a i n  negat ive values.  If we have again E = 10 6 dynes/cm 2 , 
v = 0.5, h/a = 0.1 and q - 0 we f i n d  as c r i t i c a l  pressure a t  which 

t h e  system becomes i n s t a b l e  

1 -  
Ap = -0.25 mm Hg. 

For axisymmetric waves of type I t h e  e f f e c t  of t e t h e r i n g  o r  axial  

s t r e t c h  i s  s m a l l  a t  low frequencies but  becomes reasonably s i g n i f i c a n t  

a t  higher  f requencies  where an increase i n  s t r e t c h  corresponding t o  a 

change of 

almost loo$, as i l l u s t r a t e d  i n  Figure 8. For s = 2 t h e  wave ve loc i ty  

q1 from 0 t o  0.2 causes an increase  i n  wave ve loc i ty  of 

i s  markedly increased a t  a l l  frequencies by e s s e n t i a l l y  a constant  amount 

while t h e  cut-off frequency i s  indeFendent of 

Figure 9, an increase  i n  a x i a l  s t r e t c h  has only l i t t l e  e f f e c t  on the  mode 

ql. A s  may be seen from 

shapes of t h e  waves. 

E f f e c t s  of Geometry, Poisson 's  R a t i o  and t'ne Density Rat io  

The e f f ec t  of geometry i s  examined by comparing phase v e l o c i t i e s  

and mode shapes f o r  h/a = 0.01, 0.03, 0.1 and 0.2. The range 0.01 I 

h/a I 0 .1  i s  of i n t e r e s t  f o r  veins, while h/a values  between 0.1 and 

0.3 p e r t a i n  t o  a r t e r i e s .  It appears from t h e  graphs i n  Figures  10 and 11 

t h a t  t h e  phase v e l o c i t i e s  and mode shapes of type I waves f o r  s = 0, 

s = 2 a r e  g r e a t l y  affected by changes i n  h/a and t h a t  a r t e r i e s  and 

ve ins  of l i k e  diameter should have d i s t i n c t l y  d i f f e r e n t  wave propagation 

c h a r a c t e r i s t i c s  if they  have i d e n t i c a l  Young's moduli. It should be 

noted t h a t  t h e  r ad ius  of t he  middle sur face  of t h e  ves se l  has  merely a 



- 
sca l ing  e f f e c t  through t h e  nondimensional frequency parameter 

wa/c . 
LU = 

P 
According t o  the  graphs i n  Figures 12 and 13 w e  f i n d  t h a t  a change 

of Poisson 's  r a t i o  from 0.5 t o  0.3 p r a c t i c a l l y  does not a l t e i  t he  wave 

v e l o c i t y  but a f f e c t s  t h e  mode shape t o  some extent  through t h e  reference 

wave ve loc i ty  c . F i n a l l y  we conclude from the  dispers ion curves given 

i n  Figures 14 and 15 t h a t  minor v a r i a t i o n s  i n  blood dens i ty  o r  wall 

dens i ty  should have l i t t l e  e f f e c t  on the  propagation of type I waves 

s ince  a 10% change of l eads  t o  less  than lo$ change i n  t h e  phase 

v e l o c i t i e s .  

P 

- 
p 

PARAMETRIC STUDY OF TYPE I1 AND TYPE I11 WAVES 

E f f e c t s  of Transmural Pressure and Axial S t r e t ch  

Figure 16 i l l u s t r a t e s  t h e  e f f e c t s  of a transmural pressure on axi-  

symmetric type I1 and type I11 waves, with a type I wave f o r  q = 0 

presented f o r  purposes of comparison. A s  i n  t he  type I case, type I1 

and I11 phase v e l o c i t i e s  increase with increasing transmural pressure.  

However, while type I waves near ly  double thei . r  phase v e l o c i t i e s  when 

q2 

and those of type I11 l e s s  than 5%. 

Ty-pe I11 waves exh ib i t  d i spe r s ion  of less than 0.5% f o r  

i s  so small t h a t  it f a l l s  wi th in  t h e  p l o t t i n g  accuracy of t h e  curves 

i n  Figure 16. The mode shapes corresponding t o  type I1 waves remain 

purely circumferent ia l ,  while t h e  r a d i a l  component of type 111 wav(?s, 

which are small for 

mural pressure,  a s  can be seen i n  Figure 17. 

2 

i s  increased from 0 t o  0.2, those of type I1 increase less  than 20% 

Type I1 waves remain non-dispersive. 
c 

LD 5 5.0, which 

c+ = 0,  become even small wi th  i n c r e a s i x  t r a n s -  

20 



Nonaxisymmetric s = 2 waves change t h e i r  phase ve loc i t i e s  and 

cut-off frequencies markedly with transmural pressure.  Figure 16 

increasing % i s  not as g rea t  as i n  t h e  case of type I waves. From 

Figure 18, it i s  evident t h a t  mode shapes a r e  not s i g n i f i c a n t l y  a l t e r e d  

by t h e  presence of a transmural pressure, except t h a t  the cut-off 

frequencies a re  increased. 

Figures 19, 20 and 2 1  i l l u s t r a t e  t he  e f f e c t  of an a x i a l  s t r e t c h  

f o r  values of q between 0 and 0.4. For s = 0 and s = 2 the  phase 

v e l o c i t i e s  general ly  increase with increasing The type I1 and type 

I11 cut-off frequencies f o r  nonaxisymmetric waves remain independent of 

1 

q 1' 

Comparing Figures 16 and 19, it can be seen t h a t  the  changes i n  the  

phase ve loc i t i e s  of axisymmetric waves produced by an a x i a l  s t r e t c h  with 

91 * 

given q i s  e s s e n t i a l l y  the  same as  those changes produced by a t r a n s -  

m u r a l  pressure  corresponding t o  a value of 

a r e  not s i g n i f i c a n t l y  a l t e r e d  by the presence of an a x i a l  s t r e t ch .  

1 

q2 = ql/v. Mode shapes again 

A 

review of the  r e s u l t s  given f o r  axisymmetric type I11 waves ind ica tes  

t h a t  t h e  phase v e l o c i t i e s  appear t o  be more sens i t i ve  t o  small changes i n  

t h e  axial s t r e t c h  parameter than t o  s m a l l  changes i n  the  transmural 

pressure  parameter ~ 2 .  Conversely, t h e  amplitude p a t t e r n  of such waves 

shows a g r e a t e r  s e n s i t i v i t y  t o  changes i n  t h e  parameter % than t o  q 

q1 

1' 

E f f e c t s  of Geometry, Poisson's Ratio and the  Density Rat io  

Unlike the  case of type I waves, t he  phase v e l o c i t i e s  of waves of 

type I1 and I11 a r e  only mildly affected by changes i n  the  thickness  

r a t i o  h/a, as shown i n  Figures 22, 23 and 24. I n  t h e  axisymmetric 

case,  t h i s  r e s u l t  f o r  type I1 waves i s  well-known and follows immediately 

from equation (32) .  A s  i s  evident from equations (33) and (36) the  cu t -  
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off frequencies f o r  s = 2 waves are s h i f t e d  t o  s l i g h t l y  higher values 

as h/a i s  increased. The ax ia l  and circumferent ia l  mode shapes of 

type I1 and I11 waves remain p r a c t i c a l l y  unchanged as 

In t h e  r a d i a l  d i r ec t ion ,  however, t h e  displacement i s  approximately 

proport ional  t o  h/a. 

icance, s i n c e  a l a r g e r  r a d i a l  displacement implies a l a r g e r  pressure,  

which i n  turn  suggests t h a t  non-axisymmetric waves of type I1 and 

I11 should be more r e a d i l y  observed i n  t h i c k  walled tubes .  

h/a i s  va r i ed .  

This l a s t  r e s u l t  could be of experimental s i g n i f -  

Figures 25, 26 and 27 show t h a t  t he  non-dimensional phase 

v e l o c i t i e s  of type I1 waves are s t rongly a f f ec t ed  by changes i n  Poisson 's  

r a t i o  f o r  the s = 0 and s = 2 waves. The type I1 mode shape remains 

ci rcwnferent ia lwhen s = 0. When s = 2, mode shapes of type I1 waves 

a r e  essentiallyunchanged when v i s  varied,  except t h a t  t h e  cut-off 

frequencies are increased.  Likewise, phase v e l o c i t i e s  and mode shapes 

of type I11 waves f o r  both s = 0 and s = 2 remain near ly  unal tered 

by va r i a t ions  i n  v. However, it should be emphasized a t  t h i s  point  t h a t  

Poisson 's  r a t i o  e n t e r s  i n t o  t h e  reference speed c u t i l i z e d  i n  t h e  
P 

normalization of both t h e  phase v e l o c i t i e s  and frequencies ,  so t h a t  t h e  

dimensionalized type I11 phase v e l o c i t i e s  and mode shapes w i l l  be s t rong 

funct ions of v. 

The phase v e l o c i t i e s  of misymmetric type I1 waves a r e  independent 

of t h e  density r a t i o  p, as i s  evident from equation (32 ) .  Changes i n  

type I11 axisymmetric waves are l e s s  than O.l5$ f o r  0.9 S I; 1.1, when 

h/a = 0.1, q1 = q2 = 0 and a r e  therc,forc-. e n t i r e l y  i n s j g n i f -  

i c a n t  f o r  studying t h e  propagation of such waves i n  blood vesse l s .  

Similar ly ,  when s = 2, dens i ty  r a t i o  v a r i a t i o n s  f o r  0.9 5 5 1.1 

- 

and V = 0.5,  
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have no pronounced e f f e c t  on ty-pe I1 waves but  a not iceable  e f f e c t  on 

ty-pe I11 waves near  t h e  cut-off frequencies.  From equation (36) it 
- 

fol lows t h a t  t’ne %me 111 c-ut-off ---- 1requcric;ies * - - - - -  increase  only 0.75 as 9 

decreases from 1.1 t o  0.9, and t h e  values fo r  h/a, ql, 9;1 and v a r e  

the  same a s  those given above. Mode shapes a re  a l l  v i r t u a l l y  i d e n t i c a l  

t o  those f o r  p = 1.0 except for the small v a r i a t i o n  i n  the  cut-off 
- 

frequency of ty-pe I11 waves. 
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PART I1 - VISCOELASTIC SHELL ANALYSIS 

EFFECTS OF VISCOELASTICITY OF THE VESSEL W A L L  ON THE DISPERSION AND 

DISSIPATION OF WAVES 

Introduct ion 

The propagation of sounds and pulse  waves wi th in  t h e  cardiovascular 

system i s  subject t o  s t rong d i s s i p a t i v e  mechanisms. The d i s s i p a t i o n  of 

waves i n  blood vesse l s  can be a t t r i b u t e d  t o  t h r e e  main causes:  v i s c o s i t y  

of  t,he blood, v i s c o e l a s t i c  behavior of t h e  wall, and r a d i a t i o n  of energy 

i n t o  t h e  surrounding medium. Some da ta  on t h e  combined e f f e c t  of t h e  

various d i s s i p a t i v e  mechanisms i n  arteries under i n  vivo conditions has 

been deduced from simultaneous recordings of t h e  n a t u r a l  pulse  wave a t  

various points  along t h e  a o r t a  and o the r  a r te r ies  of anesthet ized dogs. 

The da ta  take i n t o  account t h e  e f f e c t s  of r e f l ec t , i ons  and dispers ion and 

are based on t he  assumption t h a t  t h e  propagation of pressure pulses  

generated by t h e  h e a r t  i s  governed by l i n e a r  laws t h a t  permit a harmonic 

analys i s . 
Several mathematical models have been pos tu la ted  f o r  d i s s i p a t i v e  

mechanisms 14y15J16’17 which t a k e  i n t o  considerat ion t h e  v i s c o s i t y  of 

t h e  f l u i d  and v i s c o e l a s t i c  p rope r t i e s  of t h e  v e s s e l  w a l l ,  but  which 

l a r g e l y  adhere t o  a membrane ana lys i s  and exc lus ive ly  consider only 

axisymmetric waves of type I .  Also, t h e s e  models have neglected t h e  

presence of an ax ia l  s t r e t c h  and a transmural pressure,  both of which 

play a s i g n i f i c a n t  r o l e .  

24 
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Recently, techniques have been developed which make possible the 

direct measurement of dissipation in veins as well as in arteries. 

These direct methods are not subject to certain of the inaccuracies 

inherent in the indirect techniques which have been previously employed. 

Results from direct arterial and venous experiments on anesthetized dogs 

reveal a strong frequency dependence of the dissipation at frequencies 

between 50 and 200 cycles per second. 

18 

The magnitude of the dissipation, 

however, is markedly less than one might expect 

through the indirect methods. 

It has been shown theoretically1' that for 

from the data 

the frequency 

obtained 

range 

covered in the direct dissipation measurements described in Reference 18 

the effects of fluid viscosity are unimportant as far as the dispersion 

and dissipation of symmetric type I waves are'concerned. Therefore, in 

this section, the fluid will again be treated as inviscid. Even though 

the contribution of the surrounding medium to the dissipation of waves 

will most likely be of importance, it will not be investigated iii this 

study. 

VISCOELASTIC SHELL EQUATIONS 

In the three-dimensional theory of linear viscoelasticity, an 

isotropic viscoelasticmaterial is described by means of relationships 

specifying the material's behavior in shear and in dilitation; i.e., 

and 

3 P'(aii) = Q'(cii) 



where P, Q, P '  and Q ' .  a r e  l i n e a r  d i f f e r e n t i a l  operators  of the  form 

(41) 2 L(D) = a. + a D + a2D + ... + anDn 1 

with D = a/&. The c o e f f i c i e n t s  ai a r e  constants ,  and the  operators  

P and Q may be chosen independent of P '  and Q ' .  The v i s c o e l a s t i c  

equat ions are analogous t o  the  e l a s t i c  r e l a t i o n s  

and 

1 - = Kcii 3 ii (43)  

i n  which G and K a r e  t h e  shear  modulus and bulk modulus, r e spec t ive ly .  

From t h e  e l a s t i c  r e l a t i o n s h i p s  

Gz-1 E , K = v  E 
2 l + v  3 1-2v  

and from the  formal equivalences 

- 
Q/P = 5 Q ' / P '  = K 

(44) 

(45 1 
- 

one may, by a lgebra ic  manipulations, def ine  opera tors  E and 7 i n  terms 

of t h e  v i scoe la s t i c  opera tors  P, Q, P' and Q ' .  One obta ins  

9QQ ' - 
3 Q T +  QP' E =  

and 

3Q 'P  - 2QF" 
2(3Q'P + W ' )  v =  

Replacing the Young's modulus E and Po i s son ' s  r a t i o  v i n  t he  

d i f f e r e n t i a l  equat ions of motion f o r  t h e  f l u i d  f i l l e d  e l a s t i c  v e s s e l  

(47) 



- 
(equat ions (12) and (13)) b: the  operators  E and 7 as defined by 

equations (46) and (47), one a r r ives  a t  t h e  d i f f e r e n t i a l  equations of 

motion corresponding t o  a l i n e a r l y  v i scoe la s t i c  ves se l  w a l l .  

equat ions of motion and kinematic boundary condi t ions a r e  c l e a r l y  

unaffected by t h e  assumptions made on t h e  v e s s e l  w a l l  mater ia l ,  so  t h a t  

t h e  apparent mass term remains unchanged. 

A s  i n  t h e  case of t he  e l a s t i c  s h e l l ,  so lu t ions  of t h e  form 

The f l u i d  

u = A exp[ i (kx  - c u t  + s p ) ]  

v = B exp[ i (kx  - cut  + sg ) ]  

r[ w = C exp[ i (kx  - cu t  + sB + -1 2 

a r e  assumed. 

k = b% + i k  

p re sen t .  The phase ve loc i ty  of s igna ls  with an angular frequency cu i s  

given by c = u/%, 

e q ( - k  x) a f t e r  t r a v e l l i n g  a dis tance x. 

I n  t h e  corresponding frequency equation t h e  wave number 

must have a p o s i t i v e  imaginary p a r t  i f  a t t enua t ion  i s  t o  be I 

while t h e  s igna l  i s  a t tenuated  by a f a c t o r  of 

I 

It should be noted t h a t  for the  t r i a l  so lu t ion  (48) the  frequency 

equat ion  can be obtained by formally s u b s t i t u t i n g  - iu f o r  D i n  t h e  

ope ra to r s  E and given by equations (46) and (47) and by rep lac ing  

E and v i n  t h e  e l a s t i c  frequencyequation (23) by E and Y. Therefore, 

it is  poss ib le  t o  a r r i v e  d i r e c t l y  a t  t h e  v i s c o e l a s t i c  frequency equation 

without  formally der iv ing  the  v i scoe la s t i c  d i f f e r e n t i a l  equat ions of 

motion. It i s  c l e a r  t h a t  the  v i scoe la s t i c  parameters corresponding t o  

E and v w i l l  be complex, and f o r  t h e  sake of c l a r i t y ,  they w i l l  be 

denoted E and $, r e spec t ive ly :  

- 
z 

A 



with 

_= yD 
-+ -icu 

VISCOELASTIC MODELS 

In one-dimensional linear viscoelasticity it is convenient to 

interpret expressions of the form Pa = QE as a mathematical model of a 

mechanical system consisting of springs and dashpots. Because of mathe- 

matical complexities, this mechanical system is usually restricted to 

three simple models: the standard linear solid, the Maxwell fluid, and 

the Voigt solid. In the three-dimensional case the problem may become 

completely intractable when independent models for both the shear and 

dilitationalbehavior of the material must be selected. A major 

simplification can be achieved if the material is assumed to be incom- 

pressible. Utilizing the fact that most biological materials, including 

blood vessels, are nearly incompressible, we assume that 
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A 

P’ - = o  
6‘ 

From t h i s  it follows t h a t  

A L ,  

E  ̂ = 3Q/P (53) 

and 

(54) 
* 1  

= 5 *  

Thus the  v i s c o e l a s t i c  proper t ies  of t he  mater ia l  a r e  now completely 

determined by i t s  behavior i n  shear and a s ing le  v i s c o e l a s t i c  model 

s u f f i c e s  t o  descr ibe the  behavior of t h e  mater ia l .  I n  the  case of t he  

th ree  simple models mentioned 

A 

Standard l i n e a r  s o l i d  E 

A 

Maxwell f l u i d  .E 

A 

Voigt s o l i d  E 

* 
above, E becomes: 

1 - i ? p / E 2  - - E1E2 
E t E2 1 - i v / ( v  +E 1 “1 * I  

= 3(E,  - iw) .  

(55) 

I r r e s p e c t i v e  of t he  v i s c o e l a s t i c  behavior, 

form 

2 may be w r i t t e n  i n  the  

I n  fact, equations (56) and (54) may be taken a s  the  s t a r t i n g  point  f o r  

an a n a l y s i s  of waves i n  a v iscoe las t ic  vessel ,  with the  funct ions 

&(a) and (cu) se lec ted  so as to  e x h i b i t  c e r t a i n  proper t ies  determined 

from ejiTerimefita1 data. 

15, 16 and 17 .  

I 
Such a3  approach has been employed i n  References 

However, these inves t iga t ions  have been r e s t r i c t e d  t o  
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axisymmetric v ib ra t ions  using an u n r e a l i s t i c  mechanical model f o r  t h e  

vesse l ,  since i n i t i a l  a x i a l  s t r e t c h  and a transmural pressure were 

neglected.  

v i s c o e l a s t i c  behavior of t h e  v e s s e l  wall including t h e  influence of 

i n i t i a l  loading, bending r i g i d i t y ,  and a l s o  allowing for non-symmetrical 

waves. 

O f  i n t e r e s t  i s  a systematic ana lys i s  of t h e  e f f e c t s  of a 

O f  t he  t h r e e  simple v i s c o e l a s t i c  models considered here,  i t  i s  

c l e a r  t h a t  the standard l i n e a r  s o l i d  allows f o r  t h e  most complete 

representat ion of t h e  v i s c o e l a s t i c  behavior of blood vesse l s ,  s ince  it 

includes the Maxwell f l u i d  and Voigt s o l i d  as s p e c i a l  cases .  However, 

t h r e e  independent parameters must be se l ec t ed  t o  def ine such a so l id ,  

while only two are needed f o r  t h e  Maxwell o r  Voigt model. For a thorough 

parametric ana lys i s ,  t h e  computational e f f o r t  increases  considerably with 

each add i t iona l  parameter. Therefore, a t t e n t i o n  w i l l  be r e s t r i c t e d  t o  

t h e  Maxwell and Voigt models. 

The decision as t o  whether t h e  Maxwell o r  Voigt model i s  t h e  more 

appropriate  must be made on t h e  basis of experimental evidence. Resul ts  

of r ecen t  experiments i n d i c a t e  t h a t  i n  t h e  range from 50 t o  200 cycles  

p e r  second the damping p e r  wavelength cf type I waves i n  t h e  tho rac i c  

a o r t a  of anesthetized dogs i s  e s s e n t i a l l y  independent of frequency. 

A s s u m i n g ,  as a f i r s t  approximation, t h a t  t h e  phase v e l o c i t y  c of type I 

waves i s  given by the  Moens-Korteweg formula 

18 

2 Eh c z- 
2p a f 

Yor a l l  frequencies, it fol lows t h a t  i n  t h e  v i s c o e l a s t i c  case the  damping 

p e r  wavelength f o r  t h e  Voigt model i n  shear  i s  given by 
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L -I 

while the  Maxwell model y i e l d s  

1 

I n  these  expressions A. and Ah are the  wave amplitudes a t  x = 0 and 

x = h, respect ively,  with A denoting the  wavelength. For l a rge  3, 

Ah/Ao approaches exp(-2n) for t h e  Voigt model and 1.0 f o r  the  Maxwell 

model. From t h i s  w e  conclude t h a t  a t  high frequencies  the  Maxwell model 

p r e d i c t s  an extremely small attenuation, which i s  i n  cont ras t  with 

experimental observations.  It should be noted t h a t  t he  phase ve loc i ty  

c and Ah/Ao have a l so  been determined by solving the  frequency equation 

f o r  t h e  v i s c o e l a s t i c  s h e l l  using tine Maxwell model. The r e s u l t s  again 

show t h a t  the  Maxwell model does not lead t o  damping cha rac t e r i s t i c s  and 

phase v e l o c i t i e s  which a r e  i n  agreement with experimental evidence. On 

t h e  o t h e r  hand, as w i l l  be shown, the Voigt model r e f l e c t s  more r e a l i s t i c  

wave propagation c h a r a c t e r i s t i c s .  

parametric study of wave propagation t o  blood vesse ls  whose shear deforma- 

t i o n  i s  governed by a Voigt model. 

We have therefore  r e s t r i c t e d  o w  

NORMALIZATION 

I n  the  e l a s t i c  case we introduced as normalizi;.< ve lcc i ty  
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Since, f o r  v i scoe la s t i c  ma te r i a l  6 and a r e  i n  genera l  both complex 

func t ions  of frequency, t he  above expression f o r  c would lead t o  a 

complex ve loc i ty .  

d e f i n i t i o n  a normalizing ve loc i ty  

P 
We avoid t h i s  by introducing i n  l i e u  of t he  above 

b C 

h 

i s  r e a l  and i s  equal  t o  the  value of t h e  complex Young’s 
EO 

where 

modulus E taken for (I) = 0. I n  p a r t i c u l a r ,  f o r  the  Voigt model we have 
A 

c =[$I 1/2 

b 

We add i t iona l ly  introduce t h e  following dimensionless parameters:  

A2 2 2 c = c /Cb 

A2 2 2  2 
u) = (I) a /cb 

c1 = T10/3Eo” 

92 A = aOp/3Eoh 

It i s  i n t e r e s t i n g  t o  note t h a t  i n  t h e  expression for 

(Eo/pw)1’2 h a s  t he  dimension of a speed. Hence, 1/{ may be considered 

4 t h e  quant i ty  
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to be a viscoelastic Reynold’s number, in which the tube radius a is 

the characteristic length and (E /p )1’2 the characteristic speed. o w  

RF:SULTS OF VISCOELASTIC SHELL ANALYSIS 

The frequency equation for the viscoelastic case interrelates eleven 

A A  
- 

dimensionless parameters c ,  s,, h!a, a: 6 1: $, (I>, c ,  z*j ICI”’ ar?d ;. 
The first nine parameters are basically the same as in the elastic case, 

except that the five parameters tl, c2, &, 6, and ;* differ by 

constant factors from ql, q2, LD, c, and ;*. In addition to these first 

nine parameters we now have also a measure of the wave attenuation in the 

form of k a, the imaginary part of the complex wave number, and the 

dimensionless coefficient of viscosity 6. It is convenient and more 

descriptive to present the effects of damping in the form of the amplitude 

ratio AA/Ao 

that AA/Ao is given by 

- -  

I 

in lieu of k a. From equation (48) it follows immediately I 

A ~ / A ,  = exp[-2~r -1. kI 
% 

Within the range of parameter values encountered in physiological 

problems, we again find that all but the three slowest modes are a direct 

consequence of fluid compressibility. Adhering to the same nomenclature 

as in the elastic case, we again identify these three slowest modes as 

waves of types I, I1 and 111. I 

Discussion of Axisymmetric Waves 

Figure 28 presents the non-dimensional axial phase velocity 6 for 

misymmetric waves as a function of the non-dimensional viscosity 
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c o e f f i c i e n t  < ranging from 0 ( e l a s t i c  case)  t o  1.0. It should be 

r e c a l l e d  tha t  type I waves have a displacement p a t t e r n  t h a t  i s  predom- 

i n a n t l y  r a d i a l  i n  nature and therefore  have associated with them consid- 

e rab ly  stronger pressure f l u c t u a t i o n s  than waves of type I1 and 111. We 

note t h a t  as & approaches zero the  phase ve loc i ty  of each of the  th ree  

types of waves approaches a l i m i t i n g  value which i s  independent of 7 

and which i s  i d e n t i c a l  with t h e  l i m i t i n g  value obtained i n  the  e l a s t i c  

case.  

A 

h 
a For i$ << 1 and - << 1 we can determine the  phase v e l o c i t i e s  of 

type I waves approximately from 

A2 1 [h/2Fa + v 2 / ( 1  - 2; !)] 
c w- 

From t h i s  i t  follows immediately t h a t  a t  very low frequencies the  e f f e c t s  

of v i s c o e l a s t i c i t y  on d ispers ion  of axisymmetric waves i n  a t h i n  walled 

v e s s e l  i s  only of second order .  

s ince it predic t s  t h a t  t he  v i s c o e l a s t i c  behavior of blood vesse ls  w i l l  

p r a c t i c a l l y  have no e f f e c t ,  on t h e  phase v e l o c i t i e s  a t  low frequencies .  

Therefore, one cannot expect t o  determine r e l i a b l y  the  v i s c o e l a s t i c  param- 

e t e r s  of blood vesse ls  on t h e  b a s i s  of phase v e l o c i t y  measurements of 

pressure waves. 

This r e s u l t  i s  of p a r t i c u l a r  s ignif icance 

The frequency equation y i e l d s  an  exact expression f o r  the  phase 

v e l o c i t i e s  of type I1 waves, which can be w r i t t e n  i n  the  form 
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For type I11 waves no closed form expression can be given f o r  t he  phase 

v e l o c i t i e s .  However, w i t h  t h e  r e s t r i c t i o n  $ << 1 we f i n d  approxi- 

mately f o r  t he  speeds of  axisymmetric type I11 waves 

2 1 [l - Y 2 / ( 1  - 2; 33 
C N N  \ 

A s  can be seen from Figure 28, type I1 and 111 waves become highly 

d ispers ive  as i s  increased from 0.0 t o  1.0, although equations (65) and 

(66) indicate t h a t  the  dispers ion w i l l  be only of second order f o r  small 

< 

Figure 29 d e p i c t s  t he  damping per  wavelength of axisymmetric waves 

as a func t ion  of t he  frequency parameter d5 f o r  0.0 5 6 5 1.0. I n  t h e  

case of type I waves, the  curves indicate  t h a t  for & 2 0.4 

r a t i o  AA/Ao 

6 S 1.0. 

the  damping 

i s  e s s e n t i a l l y  independent of  frequency, f o r  a l l  values of 

This property lends support t o  t he  appropriateness of the 

Voigt s o l i d  i n  shear as a model for  t h e  v i s c o e l a s t i c  behavior of t‘ne 

v e s s e l  wall, s ince recent  wave propagation experiments i n  the  thoracic  

and abdominal ao r t a  of anesthetized dogs have exhibi ted similar damping 

c h a r a c t e r i s t i c s . ”  I n  t h i s  connection it should be emphasized t h a t  the  

experimental  da ta  r e f e r r e d  t o  here includes t h e  contr ibut ion of blood 

v i s c o s i t y  and r a d i a t i o n  of energy in to  the  vascular bed t o  the  at tenuat ion 

of waves i n  addi t ion t o  the  d iss ipa t ion  i n  the  w a l l  due t o  i t s  viscoelas-  

t i c i t y .  

from Reference 18 suggests t h a t  

range of 50 t o  200 cycles  per  second. This con t r a s t s  with < M 5 implied 

A comparison of our t h e o r e t i c a l  r e s u l t s  with experimental da ta  

i s  l e s s  than 0.5 over the frequency { 

by Reference 15  f o r  low frequency waves i n  the  abdominal aor ta  of dogs. 

35 



. .  

A t  very low frequencies  type I1 and type I11 waves a r e  not a s  

heavi ly  damped a s  those of type I but  a r e  more heavi ly  damped when 

& 2 0.4. For  waves of type I1 the  amplitude r a t i o  AA/Ao can be given 

i n  closed form a s  

- exp - -  

AO 
L J 

No such closed form expression f o r  can be given f o r  type I and 

I11 waves. However, when T@ << 1.0, t h e  damping r a t i o  f o r  a l l  t h ree  

AA/Ao 

types can be approximated by 

From equation (68) w e  conclude t h a t ,  f o r  small 9, 
decreases l i n e a r l y  with < or  i?~. 

the  damping r a t i o  

The mode shapes for axisymmetric waves a r e  near ly  independent of 

4 for 4 2 1.0, a s  i s  evident  from Figure 30. Only t h e  r a d i a l  components 

of type I11 waves show any not iceable  change wi th  

I mode shapes are so small a s  t o  f a l l  w i th in  the  p l o t t i n g  accuracy of 

the  curves.  

4.  Changes i n  t h e  type 

Figure 3 1 d e p i c t s  the  phase v e l o c i t i e s  of axisymmetric type I, I1 

and f o r  four  values  of t h e  a x i a l  t e t h e r i n g  and I11 waves f o r  

parameter 4 
only s ign i f i can t  a t  higher  f requencies ,  w e  f i n d  t h a t  t e t h e r i n g  a f f e c t s  

the speed of waves of type I1 and I11 pr imar i ly  a t  lower f requencies .  

From Figure 32, it i s  seen t h a t  a x i a l  t e t h e r i n g  has  a marked ef fec t .  on 

the  magnitude of t h e  damping of type I waves f o r  

< = 0.5 

While d ispers ion  of type I waves due t o  t e t h e r i n g  i s  1' 

4 = 0.5. When 
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= 0.2 the  a t tenuat ion  pe r  wavelength a t  high frequencies  i s  l e s s  41 
than ha l f  of t h a t  f o r  

parameters ex t rac ted  from da ta  per ta in ing  t o  high frequency pressure 

cl = 0 .  This serves  t o  emphasize t h a t  v i s c o e l a s t i c  

waves may be se r ious ly  i n  e r r o r  i f  ves se l  t e the r ing  i s  not considered. 

The e f f e c t  of t e the r ing  on t h e  mode shapes of axisymmetric waves i s  

neg l ig ib l e ,  a s  can be seen from Figure 33. 

The r e s u l t s  of t he  e f f e c t s  of a transmural pressure  on the  dispers ion,  

mode shapes and a t t enua t ion  of axisymmetric waves a r e  i l l u s t r a t e d  i n  

Figures  34, 35 and 36. We note t h a t  t he  e f f e c t s  on the  wave propagation 

c h a r a c t e r i s t i c s  of a transmural pressure and an a x i a l  s t r e t c h  a r e  qu i t e  

similar i n  na ture .  This i s  t o  be  expected, s ince t h e  ves se l  was assumed 

t o  be f ixed  a t  i t s  ends, which means t h a t  an i n t e r n a l  pressure &I w i l l  

in t roduce a corresponding a x i a l  s t r e s s  of magnitude vApa/h. 

The thickness  r a t i o  h/a s i g n i f i c a n t l y  a f f e c t s  t he  phase v e l o c i t i e s  

of t ype  I waves, a s  i n  t h e  e l a s t i c  case, but leaves the  speed of type I1 

and type I11 waves near ly  u c h a r . e d ,  as can be seen from Figiire 37. 

According t o  Figure 38, t h e  damping r a t i o  

t o  v a r i a t i o n s  i n  h/a f o r  a l l  three types of waves. Similar ly ,  we f i n d  

no s i g n i f i c a n t  changes i n  the  mode shapes f o r  d i f f e r e n t  values  of 

AA/Ao i s  remarkably in sens i t i ve  

h/a. 

Discussion of Non-Axisymmetric Waves 

I n  the  case of ves se l s  with an e l a s t i c  wal l  mater ia l ,  it was shown 

e a r l i e r  t h a t  cut-off f requencies  ex i s t  f o r  non-misymmetric waves of types 

I, I1 and 111, wi th  t h e  so l e  exception of type I waves with s = 1. If 

t h e  v e s s e l  w a l l  i s  composed of an incompressible v i s c o e l a s t i c  mater ia l ,  

whose shear  deformation i s  governed by t h e  Voigt model, we nc longer f i n d  
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cut-off frequencies i n  the  c l a s s i c a l  sense.  

t h e o r e t i c a l l y  being propagated a t  a l l  f requencies .  However, a s  w i l l  be 

seen, t he  amplitude r a t i o  AA/Ao Of waves propagating near and below the  

corresponding e l a s t i c  cut-off frequency i s  so  small  t h a t  the  experimental  

v e r i f i c a t i o n  of  t h e i r  exis tence would be a quest ion of s e n s i t i v i t y  of t he  

t ransducers  u t i l i z e d .  For p r a c t i c a l  purposes one might therefore  consider 

introducing a cut-off  frequency on t h e  b a s i s  of a minimal observable wave 

amplitude. 

Non-misymmetric waves a r e  now 

Discussion of waves wi th  s = 1. 

For s = 1 t h e  phase v e l o c i t i e s  of type I waves exh ib i t  only mild 

d ispers ion  when fl v a r i e s  between 0 and 1.0, as can be seen from Figure 

40. 

dependent on fi and &. Except f o r  fi = 0, cut-off  f requencies  no 

longer e x i s t  f o r  type I1 and type I11 waves, although t h i s  i s  not r e a d i l y  

apparent from Figure 40. Considering, however, t he  v a r i a t i o n  of t he  mode 

shapes with frequency, as i l l u s t r a t e d  i n  Figure 42,  we note t h a t  waves 

a r e  indeed being propagated below the  e l a s t i c  cut-off  frequency f o r  a l l  

values of 6 covered i n  our parametric s tudy.  We a l s o  see t h a t  t he  mode 

shape of type I waves i s  p r a c t i c a l l y  una l te red  by increas ing  

0 t o  1.0, while t he  type I1 and type I11 mode shapes e x h i b i t  g r e a t  s ens i -  

t i v i t y  t o  changes i n  9. 

On t h e  other  hand, t he  speed of waves of type I1 and I11 a r e  s t rongly  

fi from 

According t o  Figure 41 ,  type I waves e x h i b i t  a t t enua t ion  p rope r t i e s  

s imi l a r  Lo those of axisymmetric type I waves, i . e . ,  t h e  a t t enua t ion  p e r  

wavelength i s  again e s s e n t i a l l y  independent of frequency f o r  

I n  cont , ras t  t o  t h i s ,  even comparatively small values  of lead t o  a 

& >> 0.4. 
I 
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st rong a t tenuat ion  per  wavelength as compared with the  axisymmetric 

case.  

Discussion of waves with s = 2 

From the  r e s u l t s  given i n  Figure 43, we again note t h a t  the  speed of 

propagation of type I waves i s  only mildly a f fec ted  by changes i n  

between 0 and 1.0. 

6 
The phase ve loc i t i e s  of type I1 and I11 waves on the  

o ther  hand are s t rongly dependent on the  v i s c o e l a s t i c i t y  of the  vesse l  

wall. Propagation of a l l  th ree  types of waves below the  e l a s t i c  cut-off 

f requencies  i s  again possible  but damping per  wavelength below cut-off 

i s  so high t h a t  they can be ignored. 

From Figure 45 it follows that type I1 and I11 mode shapes exhib i t  

s t rong  dependence on the  parameter 6 f o r  a l l  $ 5 4.0, while the  mode 

shape for 

case (6 = 0 ) .  

0 5 < S 1.0 i s  indis t inguishable  from t h a t  of t h e  e l a s t i c  

Figures 46 through 48 i l l u s t r a t e  t he  s e n s i t i v i t y  of booth 

AA/Ao t o  a x i a l  t e t h e r i n g  when = 0.5. Near the  e l a s t i c  cut-off 

frequency, type I phase v e l o c i t i e s  may double i n  magnitude as 

increased from 0 t o  0.2.  Likewise, t h e  amplitude r a t i o  may grow by more 

c  ̂ mid 

il i s  

than  a f a c t o r  of two with the  same change i n  te ther ing .  The s e n s i t i v i t y  

of t h e  phase v e l o c i t i e s  and damping c h a r a c t e r i s t i c s  of type I1 and I11 

waves t o  changes i n  axial  s t r e t c h  may be equally pronounced, but f o r  

p r a c t i c a l  purposes unimportant i n  view of t he  heavy damping. 

48, w e  see t h a t  mode shapes show no s ign i f i can t  dependence on 

From Figure 

except 61 
a t  low frequencies .  
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The e f f e c t s  of a transmural pressure  on phase v e l o c i t i e s ,  damping 

c h a r a c t e r i s t i c s  and mode shapes of s = 2 waves a re  summarized i n  

Figures  49, 50 and 5 1  f o r  4 = 0.5. The d ispers ive  nature  of these  waves 

i s  e s s e n t i a l l y  similar t o  t h a t  of t he  e l a s t i c  case, except f o r  t he  

ex is tence  of waves below the  e l a s t i c  cut-off frequency. The amplitude 

r a t i o  \/Ao 

pressure,  w h i l e  t h e  absolute  changes i n  t h e  amplitude r a t i o  of' type I1 

a n d I I I  waves may be termed i n s i g n i f i c a n t .  

"he r e s u l t s  p l o t t e d  i n  Figures  52 through 54 i l l u s t r a t e  the  inf luencr  

h/a on t h e  propagation c h a r a c t e r i s t i c s  

of type I waves inc reases  markedly with r i s i n g  transmural 

of changes i n  t h e  thickness  r a t i o  

of s = 2 waves f o r  6 = 0.5 .  Varia t ions  i n  t h e  thickness  r a t i o  have a 

s t rong influence on t h e  phase v e l o c i t i e s  of waves of type I.  Except near 

t he  e l a s t i c  cu t -of f  f requencies ,  t h e  phase v e l o c i t i e s  of' type I waves 

vary approximately a s  (h/a)1'2. 

demonstrate t h a t  the  damping c h a r a c t e r i s t i c s  and mode shapes of' such waves 

a re  only moderately a f f ec t ed  by v a r i a t i o n s  i n  

I11 show only unimportant changes i n  t h e i r  c h a r a c t e r i s t i c s  with rc~specl, 

t o  changes i n  h/a except below t h e  e l a s t i c  cut-off  f requencies .  It 

becomes c lear ,  however, from Figure 53, t h a t  t hese  changes a r e  of no 

p r a c t i c a l  s ignif icance because of t he  severe damping. 

On t h e  o the r  hand, Figures  53 arid 54 

h/a. Waves of type I1 and 

CONCLUSIONS 

From our d ispers ion  curves we conclude t h a t  a r e a l i s t i c  model f 'or the 

dynamic behavior of blood vesse l s  should include t h e  e f f e c t s  of t he  t r a n s -  

mural pressure and t h e  a x i a l  s t r e t c h .  

similar t o  those generated by the  hea r t  appears  t o  involve pr imar i ly  

The propagat ion of  pressure  pulses 
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symmetric waves of type I since waves of type I1 are not connected with 

intraluminal  pressure f l u c t u a t i o n s  and waves of type I11 exhib i t  only 

very small pressure per turbat ions.  Q u a l i t a t i v e  agreement i s  obtained 

with recent  experiments on d iss ipa t ion  of high frequency waves i n  blood 

vesse ls  by assuming t h a t  the v e s s e l  wall mater ia l  i s  incompressible b u t  

behaves as a Vcigt s o l i d  ir. shear.  The phase v e l e c i t i e s  ef +--a VJ Yc- I axi -  

symmetric waves a re  only mildly affected by such v i s c o e l a s t i c  behavior, 

so  t h a t  it w i l l  be d i f f i c u l t  t o  obtain accurate es t imates  of the  visco- 

e l a s t i c  parameters of the  vesse l  wall on the  bas i s  of type I phase 

ve loc i ty  measurements only. The diss ipa t ion  of waves, however, exh ib i t s  

a strong dependence on the  v iscoe las t ic  proper t ies  of the  vesse l  wal l .  

Moreover, t he  d i s s i p a t i o n  decreases s u b s t a n t i a l l y  with increasing a x i a l  

s t r e t c h  o r  transmural pressure,  espec ia l ly  a t  high frequencies.  Conse- 

quently,  t he  r e l i a b l e  determination of the v i s c o e l a s t i c i t y  of the v e s s e l  

w a l l  from experiments involving high frequency wave propagation must take 

ir , to cens idera t ion  t h e  e f f e c t s  of  a x i a l  s t r e t c h  and transmural pressure.  

Considering t h e  s t r i k i n g  dispers ive proper t ies  of non-axisymmetric waves, 

t h e i r  experimental v e r i f i c a t i o n  would o f f e r  deeper in s igh t  i n t o  the 

v i s c o e l a s t i c  behavior of a r t e r i e s  and veins .  The e f f e c t s  of the compres- 

s i b i l i t y  of t h e  blood are  ins igni f icant  f o r  waves with frequencies below 

1000 cyc les  per  second. 
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